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Within the effective mass approximation a one-band model is adopted to obtain the energy structure and the oscillator 
strength of type-I semiconductor spherical core-shell quantum dot heterostructure. The core-shell lattice mismatch strain is 
modeled by the elastic continuum approach. The model is applied to CdTe/ZnSe, a wide band gap type-I heterostructure. 
We obtain a fair agreement between the simulated absorption spectrum and the available experimental results. 
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1. Introduction 
 
The discreteness of the optical spectra of the semicon-

ductor quantum dots (QDs) is the most significant charac-
teristic of these materials, which makes them very attrac-
tive from the perspective of developing novel optical and 
electronic devices. Size, shape and compounds forming 
QDs are parameters that confer a high level of controlla-
bility of the physical properties of such nanostructures. 
The colloidal core-shell semiconductor QDs have been 
chemically synthesized [1-3] with reproducible and con-
trollable size and shape and low fabrication cost. Their 
high quantum yields and the possibility of tuning the band 
gap by the shell thickness have attracted many research 
groups. Both type-I and II core-shell QDs have been 
shown to have useful application, for example in obtaining 
sensors [4] or solar cells devices [5].  

Theoretically, several approaches have been used to 
calculate the electronic structures of semiconductor QDs, 
for example, the tight-binding method [6], the effective 
bond-orbital model [7], the valence force field model [8] 
or first-principles calculations [9], the envelope-function 
methods as the effective mass approximation [10] or mul-
ti-band approach [11, 12].  Each of these methods has 
some limitations either in the accuracy of the predicted 
electronic structures or the computation cost. Thus, a sim-
ple yet realistic model for describing the energy structures 
will be highly desired for the design of the core-shell QDs 
for device applications. 

In Ref. [13] a simple one-band model within the effec-
tive mass approximation, able to describe the energy struc-
ture and some optical properties of the core-shell QD 
heterostructures is introduced. The model is valid for wide 
band gap semiconductor heterostructures (in this case the 
mixing of the conduction band (CB) and valence band 
(VB) is weak) and small QDs (in which it was found that 

the heavy hole-light hole admixture is less pronounced [12, 
14, 15]). The strain induced by the lattice mismatch at the 
interface is taken into account within an elastic continuum 
model. An ideal defect–free crystal structure is assumed 
(to avoid the growth defects, the shell thickness should be 
of only several monolayers). As the QD model has spheri-
cal symmetry, the piezoelectric effect is expected to be 
less significant [16], and consequently it is neglected. In 
Ref. [13] the type-II semiconductor heterostructure is ana-
lyzed. In the present work, based on the model introduced 
in Ref. [13], we consider the type-I semiconductor spheri-
cal core-shell QDs heterostructures. A comparison be-
tween some properties of the type I and II semiconductor 
spherical core-shell QD heterostructures predicted by the 
model is made. To make the presentation self-consistent, 
we remind in this work the main characteristics of the 
model introduced in Ref. [13]. 

The structure of the paper is as follows. In Sec. 2, the 
theoretical model used to obtain the energy structure of 
type-I semiconductor spherical core-shell quantum dots 
heterostructure is described. In Sec. 3, the model is applied 
to CdTe/ZnSe, which is a wide band gap type-I 
heterostructure. The validity of the approximations used, 
and the comparison of the predicted and experimental ab-
sorption spectra are discussed in this section. Conclusions 
are given in Sec. 4. 

 
 
2. One-band model for core-shell   
     semiconductor quantum dots 
 
To obtain the energy structure within the one-band 

model one needs to know the bulk band-offset of the 
hetersotructure and the effective masses of the carriers. 
According to the model-solid theory developed by Van de 
Walle [17], both VB and CB are shifted by the hydrostatic 
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deformation potential and, in addition, by the spin-orbit 
coupling in the case of the VB. The value of the band edge 
is given by [17] 
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where v (c) holds for VB (CB), 0
vE and 0

cE  denote the un-
strained values of the band edges, ∆  is the spin-orbit split-
ting, va and ca  are the corresponding hydrostatic defor-
mation potentials,  hydε=Ω∆Ω/  is the fractional volume 
change due to the hydrostatic strain. 

For CdTe/ZnSe core-shell QDs, the type-I 
heterostructure we discuss in this work, we draw in Fig. 1 
the schematic band lineups corresponding to the strained 
case (notations are in accordance with those from Eqs. (1)). 
On the external surface of the  
 

 
 

Fig. 1 Schematic band lineups for CdTe/ZnSe core-shell 
QD in presence of strain. The notations of the energies 

are in accordance with Eq. (1). 
 
shell, the potential is approximated by a hard wall. 

According to Fig. 1, we consider the following spherical 
square-well potentials as functions of r: 

i) for electrons: 
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ii) for holes: 

 
⎪
⎩

⎪
⎨

⎧

≥∞
<≤

<≤
=

Rr
RrrV

rr
rV

if,
if,
0if,0

)( 00V

0

;      (2b) 

 
with 0>−= CdTeZnSe

0C vv EEV , 0ZnSe
0V >−= vEV . In 

spherical coordinates the Schrödinger equation: 
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where L is the orbital angular momentum and m*(r) is the 
position-dependent effective mass. Following the standard 
procedure, we look for solutions that are products of ra-
dial part )(rRl  and spherical harmonic ),( ϕθlmY  func-
tions. Taking into account the commutation relations be-
tween the above Hamiltonian and the orbital angular mo-
mentum one obtains the single -particle radial Schrödinger 
equation  
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For Eq. (3a) we search solution by using the change of 

variable, rki=ρ , where ( ) 022 >−= iii VEmk m  if iVE<
>  

(with the notations, he
i mm ,

2,1=  for the effective mass of the 
electron (e) or hole (h) in the core (i=1) or shell (i=2), and  

iV for the values of the piecewise-constant potential in re-
gion i, that is, 0=iV  or 0VV  or 0CV ), Eq. (3a) reduces  to 
the Bessel differential equation 
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and consequently, the general solution of Eq. (3a) is 
of the form )()( rkvrR ill = . In Eq. (3b) the sign of the last 
term is positive for iVE >  and negative for iVE < . The 
solutions of Eq. (3b) are linear combinations of spherical 
Bessel or modified spherical Bessel functions, namely: 

)()()( ρρρ lllll yBjAv +=  if iVE >  or 
)()()( ρρρ lllll kBiAv +=  if iVE < , where )(),( ρρ ll yj  

are the spherical Bessel functions of the first and second 
kind, and )(),( ρρ ll ki  are the modified spherical Bessel 
functions of the first and second kind, respectively. The 
solutions should be regular and consequently we disregard 
in the linear combinations of solutions the functions infi-
nite in origin. Thus, solutions should be of the following 
form. 
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The explicit expressions of the wave functions are ob-
tained by imposing the continuity of the wave function and 
probability current, and the vanishing of the wave function 
outside the QD. Thus, for the case CVE 0< : 
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Then, the energy is obtained by solving the transcen-

dental equation 
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For the case CVE 0>   the equations expressing the 

boundary conditions and solutions are similar with those 
from Eq. (5), by replacing  )2( e

lR  by )3( e
lR , ek2  by ek3 , li  

by ly , and lk  by lj . 
For hole states the equations expressing the boundary 

conditions and solutions are similar with those from Eqs. 
(4) and (5), by replacing the index e by h. The conditions

0)()3,2( =RR ee
l , 0)()3,2( =RR hh

l  impose the wave functions 
have a node on the external surface of the shell. 

The solutions for the energy and normalizations con-
stants of Eqs. (5) implies knowing of the strain. For the 
implementation of strain effect on the VB to a II-VI zinc 
blende heterostructure, we may apply Eq. (5) (written for 
holes) to the heavy and light holes separately, by using the 
same 0VV , but different effective masses [13]. In the cal-
culation, we consider the spherical part of the heavy-hole 
mass ( hhm ) and light-hole masses ( lhm ) assumed by the 
parabolic dispersion of the one-band model [13], 

 

⎥
⎦

⎤
⎢
⎣

⎡ +
+−=

1

23

1

0)(,

5
46)(1

γ
γγ

γ
m

m lhhh                      (6)  

 
Finally, by superposing the two sets of hole states, we 

obtain the approximate VB energy structure. 
For the concrete band lineups, we need to know the 

hydrostatic strain. For the core-shell geometry, within the 
continuum elasticity approach by imposing the inner and 
outer material shrink–fit condition to the radial displace-
ment introduced by the strain, we obtain [13]: 

 

1

1
3

0
01 1

2112
ν
νεε

−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

R
r

hyd ,              (7a) 

2

2
3

00
2 1

21
3

2
ν
νε

ε
−
−

⎟
⎠
⎞

⎜
⎝
⎛−=

R
r

hyd   ,            (7b) 

 

where the subscript 1(2) holds for the core(shell), 0ε  
is the relative mismatch, and )2(,1ν  is the Poisson ratio of 
the core (shell) material. For CdTe/ZnSe core-shell QD, 
the case we analyze in Sec. 3, the lattice constant of CdTe, 
a1, is larger than the lattice constant of ZnSe, a2, and one 
obtains the strain is compressive for the core and tensile 
for the shell. Quantitatively, the relative lattice mismatch 

1120 )( aaa −=ε  is negative and according to Eqs. (7), 
01 <hydε  (compression), and 02 >hydε  (dilation). 

 
3. Application to CdTe/ZnSe core-shell  
    quantum dots 
 
The band lineups in presence of strain are obtained by 

using the model-solid theory of Van de Walle [17] as fol-
lows. For the bulk (unstrained) band-offset, we consider 
the gap energies [17], 1.59eV CdTe =0gE , 2.83 ZnSe

0 =gE , 
nm648.01 =a , nm566.02 =a , nm410.01 =v , 

nm375.02 =v , eV93.0CdTe =∆ , eV43.0ZnSe =∆ , 

eV07.7CdTe
0 −=vE , eV37.8ZnSe

0 −=vE , eV17.5CdTe
0 −=cE ,  

and eV40.5ZnSe
0 −=cE . With these bulk values of the ener-

gies and by using Eqs. (1) and (7) (with the large relative 
lattice mismatch of 128.00 −=ε ), we find the band 
lineups in presence of strain as function of R and r0 as 
shown in Fig. 2. One obtains that the strain induces en-
largement (shrinkage) of the band gap for CdTe (ZnSe), 
and the band gaps, CdTeCdTeCdTe

vcg EEE −= , 
ZnSeZnSeZnSe
vcg EEE −= , increase with the shell thickness, 

results that are similar (because of the same sign of 0ε ) 
with those reported for ZnTe/ZnSe (type-I heterostructure) 
spherical core-shell quantum dots [13]. The band lineups 
with the strain taken into account are in the intervals, 

0.554eV 0.639 0 ÷=CV , 1.408eV  1.316 0 ÷=VV for 
nm6.39.1 ÷=R . 
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Fig.2. Gap energies of CdTe/ZnSe core-shell QDs in the 
presence of lattice mismatch strain vs. core+shell radius 
R, with the core radius r0=1.8 nm.  The legend: ■ CdTe

gE

▲ ZnSe
gE . 
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Then, with the values of the Luttinger parameters 

from Lawaetz [18], 29.5CdTe
1 =γ , 89.1CdTe

2 =γ , 

46.2CdTe
3 =γ , 77.3ZnSe

1 =γ , 24.1ZnSe
2 =γ , 67.1ZnSe

3 =γ  
the spherically averaged hole effective masses according 
to Eq. (7) are 021.1 mmhh =CdTe , 0mmlh 0.10 CdTe = , 

0ZnSe 29.1 mmhh = , 0ZnSe 0.15 mmlh = . For electrons, we con-
sider the effective masses, 0CdTe 11.0 mm = , and 

021.0 mm =ZnSe [19]. 
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Fig. 3 Energy levels of: (a) holes; (b) electrons for 
CdTe/ZnSe core-shell QDs vs. core+shell radius R, with  
                      the core radius nm8.10 =r . 
 
The energy structure is shown in Fig. 3 for the first 

four levels for both electrons and (heavy) holes states. 
With Eq. (5), when comparing the energies values ob-
tained with heavy and light holes, we obtain the first four 
hole states are heavy hole states. The hole energies in Fig. 
3 remain practically unchanged by the shell thickness as a 
result of the weak mixing of the hole states of the two 
compounds (large 0VV  of the heterostructure). On the oth-
er hand, the electron energy decreases with the shell thick-
ness, which results in decreasing of the lowest energy tran-
sition, in accordance with the results regarding the absorp-
tion and emission spectra reported by Ref. [20] for such 
CdTe/ZnSe core-shell QDs. In Fig.4, we present the pre-
dictions of our model for the spatial density probabilities 

(orbitals), 
2)( ),()( ϕθα

lmnl YrR , for CdTe/ZnSe core-shell 

QD with core radius nm8.10 =r ,  )nm(6.3,3,2.2=R , 

and axis z chosen as quantization axis. The contour corre-
sponds to 75.0))((

2, ×Ψ reh
nlmMax , and the first two rows 

are for holes and the next for  electrons. The figures are 
denoted according to the following quantum numbers: (a)

001 === , m, ln ; (b) 011 === , m, ln ; (c)
111 ±=== , m, ln ; (d) 021 === , m, ln ; (e)
121 ±=== , m, ln ; (f) 221 ±=== , m, ln . The orbitals 

correspond to the first three electron (hole) energy levels 
in ascending (descending) order from Fig. 3 ((a) to the first, 
(b) and (c) to the second, and (d)-(f) to the third). 
 

 
Fig. 4a. Hole (red color) and electron (green color) 
probability density for the ground and first excited state,  
                                     see the text. 

 
 
 As the envelope wave functions are similar for elec-
tron and holes, the form of the orbitals is also similar, but 
as effect of the lager hole effective mass, the hole orbitals  
are shrunk comparatively to the electronic ones. In addi-
tion, interesting is the fact that for the excited states the 
electron is located close to the core-shell interface, a typi-
cal characteristic for type-II core-shell-QDs. This indicates 
that the type-I core-shell QDs could be used in application 
in solar cells to separate electron-hole pairs, if the electron 
excited states are those involved in separations. The 
ground state has spherical symmetry for both electron and 
hole, which is characteristic for the s orbital. The optical 
spectra can be described by the oscillator strength  [13] 

 (a)                       (b)                    (c) 
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which characterizes the probability of interband transition 
between two states, i (characterized by the 

 
Fig. 4b. Hole (red color) and electron (green color) 
probability  density for the second excited states, see the   
                                      text. 
  

set of quantum numbers,  n, L, m ) and j (characterized by 
the set of quantum numbers,  n', L', m' ); 

22
02 hPmEP =  and   xpsmiP x)/( 0h−=  is the 

Kane momentum matrix element. In Fig. 5 we present the 
influence of the shell thickness on the oscillator strengths 
obtained from the first four hole and electron states shown 
in Figs. 3 and 4 (common Ep=18.8eV for both compounds 
of the core-shell QD [21] is considered). For type-I 
heterostructures the hole and electron ground envelope 
wave functions have larger overlap than in the case of the 
type-II heterostructures, but the oscillator strength is still 
influenced by the shell thickness. Thus, the oscillator 
strength decreases with the shell thickness. This is in ac-
cordance with the experimental reports that find the shell 
thickness reduces the quantum yield of CdTe/ZnSe QD 
[20].   On the other hand, for the exited states, as result of 
the close location of the electron states to the core-shell in-
terface while the hole states remain localized in the core, 
the overlaps and consequently the oscillator strengths are 
smaller. For the excited states, thicker shell leads to a de-
crease of the oscillator strength too. Comparatively to the 
type-II heterostructures the oscillator strength is much less 

influenced by the shell thickness [see Ref. 13]. Thus, less 
pronounced decrease with the shell thickness of the quan-
tum yield and less efficient separation of the electron-hole 
pair are expected for type-I comparatively to type-II core-
shell QDs. Consequently, according to our model, these 
two factors, the quantum yield and the electron-hole sepa-
ration are competing in deciding which kind of 
herterostructure, type-I or II is more efficient in a potential 
use of he core-shell QDs in solar cell devices. As another 
characteristic of the optical absorption, we obtain a red 
shift of the lowest energy transition, 1 (as denoted in Fig. 5) 
with the shell thickness, similarly to the experiment [20].  

 

2.0 2.5 3.5 4.0 4.5
0.0
0.2
0.4

2
4
6
8

10
12

1

2

3

4

5

6

7

8

9

10

O
sc

ill
at

or
 S

tr
en

gt
h

Energy (eV)(a)
 

1.8 2.0 2.2 2.5 2.6 2.7 2.8
0.00
0.05

2

4

6

8 1

2

3
4

5

6 7 8 9

10

(b)

O
sc

ill
at

or
 S

tr
en

gt
h

Energy (eV)
 

 
Fig. 5 The oscillator strength for CdTe/ZnSe core-shell 
QD with nm8.10 =r  and a) nm2.2=R , b) 

nm6.3=R . The labels in the figures correspond to the 
following transitions: 1 for 11↔ , 2 for 21↔ , 3 for 

31↔ ,  4 for 41↔ , 5 for 22 ↔ , etc. The labels 1, 
2, 3, 4, represent the four electron (holes) states from 
Fig. 3 in ascending (descending) order of the energy. 

  
 

In Fig. 6, we compare the absorption results obtained 
in Ref. [20] with our simulated results, for CdTe/ZnSe 
core-shell QDs with nm8.10 =r as function of shell thick-
ness. We assign the lowest energy transition, 1, active one 
as shown in Fig. 5 to the main peak recorded in Ref. [20] 
in absorbance measurements. The experimental data are 
adapted from the absorbance in Fig. 2 (a) from Ref. [20], 
by taking the ZnSe monolayer thickness of 2.83Å. Exper-
imentally, obtaining uniformly coated cores with spherical 
shape for the shell is difficult task, but comparison be-
tween frequencies of the absorbed light provides a reason-
able fit for the simplicity of the model we used. 

 

  (d)                 (e)                    (f) 
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Fig. 6. Absorption wavelength for CdTe/ZnSe core-shell 
QDs with nm8.10 =r nm2.20 =r  as  function of the 
shell thickness. The simulation is obtained for the lowest 
energy transition corresponding to the transition                      
1 ( 11↔ ) in Fig. 5. The error bars of the experimental 
values are of 5%. The legend:  ■ - experimental values  
                          and ● - simulated values. 
 
 
4. Conclusions 
 
The one-band model within the effective mass ap-

proximation adopted to explain the energy structure of 
core-shell QDs gives reasonably good results for the wide 
band gap CdTe/ZnSe heterostructures. The excitonic effect 
is expected to lead to a correction of the results, but for 
small QDs (as is the case in our simulation) the Coulombic 
interaction is negligible with respect to the interlevel ener-
gy, and we limit accuracy of predictions to values of ap-
proximately 0.1eV [22]. Of particular importance for the 
correctness of our modeling is using of rather large effec-
tive masses obtained within the spherical approach 

0CdTe 21.1 mmhh = , 0ZnSe 29.1 mmhh = . On the other hand, con-
sideration of the strain is necessary for obtaining a reason-
able level of accuracy. The elastic continuum model we 
adopted proves to be an appropriate approach, in accord-
ance with the opinion of the researchers in the field regard-
ing its validity in describing nanostructures. However, us-
ing of an atomistic approach for the strain in case of thin-
ner shell would be useful [23] for comparison of the re-
sults. Location of the electron close to the core-shell inter-
face for excited sates constitutes a characteristic that could 
be useful in engineering solar cells with type-I semicon-
ductor QDs heterostructures. As the present theoretical ap-
proach was applied with good results to characterize core-
shell QDs type-II heterostructures too [13], we think that 
given its robustness, and satisfactory accuracy level, the 
approach is very useful for at least preliminary calcula-
tions of the optical properties of core-shell QDs of wide 
band gap, where the band mixing effect is of less im-
portance.  
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